101 research outputs found

    Aspects of Delay Diversity in OFDM

    Full text link
    We consider several aspects of delay diversity in coded OFDM. The cyclic properties of the FFT allow to do delay diversity in a cyclic manner without exceeding the guard interval. We investigate the impact of different cyclic delays in terms of achievable diversity level, information theory and BER performance. Furthermore, we propose an interleaving and user assignment strategy which allows multiple users to exploit the full spatial diversity in an OFDMA system with appropriately chosen cyclic delays. Finally, we introduce a scheme with low delay and low reference symbol overhead for differential modulation in frequency direction which can be detected non-coherently and is able to cope with the increased frequency-selectivity which is caused by the cyclic delays

    Inactivation Decoding of LT and Raptor Codes: Analysis and Code Design

    Get PDF
    In this paper we analyze LT and Raptor codes under inactivation decoding. A first order analysis is introduced, which provides the expected number of inactivations for an LT code, as a function of the output distribution, the number of input symbols and the decoding overhead. The analysis is then extended to the calculation of the distribution of the number of inactivations. In both cases, random inactivation is assumed. The developed analytical tools are then exploited to design LT and Raptor codes, enabling a tight control on the decoding complexity vs. failure probability trade-off. The accuracy of the approach is confirmed by numerical simulations.Comment: Accepted for publication in IEEE Transactions on Communication

    LT Code Design for Inactivation Decoding

    Get PDF
    We present a simple model of inactivation decoding for LT codes which can be used to estimate the decoding complexity as a function of the LT code degree distribution. The model is shown to be accurate in variety of settings of practical importance. The proposed method allows to perform a numerical optimization on the degree distribution of a LT code aiming at minimizing the number of inactivations required for decoding.Comment: 6 pages, 7 figure

    Decoding of Non-Binary LDPC Codes Using the Information Bottleneck Method

    Full text link
    Recently, a novel lookup table based decoding method for binary low-density parity-check codes has attracted considerable attention. In this approach, mutual-information maximizing lookup tables replace the conventional operations of the variable nodes and the check nodes in message passing decoding. Moreover, the exchanged messages are represented by integers with very small bit width. A machine learning framework termed the information bottleneck method is used to design the corresponding lookup tables. In this paper, we extend this decoding principle from binary to non-binary codes. This is not a straightforward extension, but requires a more sophisticated lookup table design to cope with the arithmetic in higher order Galois fields. Provided bit error rate simulations show that our proposed scheme outperforms the log-max decoding algorithm and operates close to sum-product decoding.Comment: This paper has been presented at IEEE International Conference on Communications (ICC'19) in Shangha

    Bounds on the Error Probability of Raptor Codes under Maximum Likelihood Decoding

    Get PDF
    In this paper upper and lower bounds on the probability of decoding failure under maximum likelihood decoding are derived for different (nonbinary) Raptor code constructions. In particular four different constructions are considered; (i) the standard Raptor code construction, (ii) a multi-edge type construction, (iii) a construction where the Raptor code is nonbinary but the generator matrix of the LT code has only binary entries, (iv) a combination of (ii) and (iii). The latter construction resembles the one employed by RaptorQ codes, which at the time of writing this article represents the state of the art in fountain codes. The bounds are shown to be tight, and provide an important aid for the design of Raptor codes.Comment: Submitted for revie

    Joint Localization and Mapping through Millimeter Wave MIMO in 5G Systems - Extended Version

    Full text link
    Millimeter wave signals with multiple transmit and receive antennas are considered as enabling technology for enhanced mobile broadband services in 5G systems. While this combination is mainly associated with achieving high data rates, it also offers huge potential for radio-based positioning. Recent studies showed that millimeter wave systems with multiple transmit and receive antennas are capable of jointly estimating the position and orientation of a mobile terminal while mapping the radio environment simultaneously. To this end, we present a message passing-based estimator which jointly estimates the position and orientation of the mobile terminal, as well as the location of reflectors or scatterers. We provide numerical examples showing that this estimator can provide considerably higher estimation accuracy compared to a state-of-the-art estimator. Our examples demonstrate that our message passing-based estimator neither requires the presence of a line-of-sight path nor prior knowledge regarding any of the parameters to be estimated
    • …
    corecore